DEIM Forum 2017 B5-1

Predicting User Reaction to Recommended Items in Job Advertisement
Elie G MAGAMBO" Hayato YAMANA '

T Graduate School of Fundamental Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku Tokyo,
Japan T Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku Tokyo, Japan

E-mail: T {eliemagambo ,yamana}@yama.info.waseda.ac.jp

Abstract: Job searching services provide suitable job items to their users using recommender systems. The recommender
systems exploit users’ information from their profiles, match them with job items’ details and calculate similarity between the
users and job items to be recommended. Measuring the usefulness of a recommender system can be cumbersome; however
analyzing the actions the user took towards the recommenced job items can provide valuable information. The information
gathered can help in improving the quality of future recommended job items. In this research, we create personalized feedback
features that capture the relevancy of the recommended job items by the system to users by learning their past post-click
actions among bookmark, reply and delete that users performed in the past to job items that are similar to the recommended
ones. Using those features, we predict future post-click users’ actions that they will perform on newly recommended job items
using SVM and feed forward neural networks. We do a comparative analysis between both predictors when personalized
feedback features are used and when they are omitted. We saw an improvement of 14% in prediction accuracy when
personalized feedback features are used compare to when they are omitted, however all predictors guaranteed same accuracy in
both cases.

Keywords: Recommender systems, classifier, personalization, feedback features, neural networks.

1. INTRODUCTION to go back and forth through the job posted. We
Online job searching services serve as recruiting have to note that since job offers have expiration
platforms for companies looking for new dates, it’s crucial to provide a way to organize
employees and also as job market places for people those job items that are suitable for the users. A
looking for new jobs. A typical use case would common challenge in job advertisement is that
start with a given company wishing to hire new users aren't always looking for jobs every day,
manager, engineers, etc. The advantage of using which makes it even more important to take into
the platform for the company is to reach a wide account granular details about the actions the
audience of competent candidates around the users undertook during their active window of job
world. searching.

The company posts those job-openings to the Recommender systems are common solutions to
platform such as Xing' hoping that suitable such challenge. The main objective of
candidates will reply to its’ job offers. recommender systems in job advertisement is to
On the other hand, candidates registered on the find suitable job items and recommend them to
platform as job seekers would later on browse users in a ranked list. They also take into account
those job-item-openings depending on how they of users’ reactions toward recommended job items
seem to match their interests. Consequently, the so that they can provide him high match users’
job offers are published at high rates on those interest.

recruiting platforms, which make it hard for users Among Common problem recommender systems

face is cold start [1, 2] where users haven't

http://xing.com Job advertisement web interacted with any items, or just joined the

service platform. It has been subjected to many researches

http://xing.com/

and exploiting information from users’ profiles
details has been useful in solving it. Another
problem is serendipity [3] where a recommender
system provides users with items that are not
useful by populist models but turns out to be
useful to users.

The focus of this research however, considers that
the wuser has already clicked on one of the
recommended items and has a possibility to take a
set of different actions towards the item. The
targeted actions are bookmark, reply and delete. In
short, the problem we are trying to address can be
stated as follow: “Given that a user has clicked on
a recommended item, is he going to bookmark it,
reply it or delete it from the recommended list?”

Solving this problem helps in making meaningful
job recommendation to users and more importantly,
filtering the unwanted ones. The remainder of this
paper is divided as follow: Section 2 covers
related works that have been done in similar
context and contrast this research with them,
Section 3 covers our approach. Section 4 discusses
about the experiment settings, results and section
research and

5 concludes this provides

recommendations and future work.

2. RELATED WORK
We use personalized feedback features to extract

aggregated information about how often the user

has performed an action on certain concepts from

the titles, tags and other attributes.

Chakrabarti et al. [4]

feedback features that capture ad-placement on

introduced interaction

web pages as ad relevance feedback. For example,
word w in certain region » of web page p has a
popularity score ?7,.,,. then, the total score of

region r of web page p is computed as follow[4]:

Mpayw = 1(W € p(T))- tyryw €))

If word w is not present in region » of web page
p, the feature contribution becomes zero.

In the same context, we also adopt the above
features to capture user tendency toward a certain
action. In contrast with [4], we capture user
feedback from

presented in the title and tags of a recommended

interaction certain concepts

job item. They are personalized in a sense because

they are user dependent. As the user has different
choice among action to undertake, we extend these
features to every action among bookmark, reply
and delete.

Chapelle et al. [5] defined conversion estimation
task as the probability that a user will convert
after they click. Conversion could be subscribing
to mailing list, making a reservation or purchasing
a product. In our case, post click actions are
limited and are the same for every job items
whereas in [5], individual advertiser predefines
the actions the user will perform as success of
their advertisement and the scope of [5] was
limited on predicting if any conversion will
happen or not after the click.

Pacuk et al. [6] worked on job recommendation
problem. They selected candidate jobs that might
be suitable for a user depending on title and tags
similar to those he has clicked upon before and
ranked them according their probability to be
clicked by the user. Although the context is similar
to our work, the tasks differ in that they limited
their work on predicting if the user will click or
not whereas for us we assume that the user has
already clicked and we are trying to predict if the
user will bookmark, reply or delete.

Another work in same context was done in
[7]. They wused Gradient boosted trees as weak
learners that estimate probabilities for every
recommended job item. Additionally, they used
hawk process [8] to model time decay of
recommended item since it has been initially
created on the platform. Finally, they make an
ensemble model that combines the probabilities
estimation from weak learners as a final score for
each recommended item. Although this work had
better results, it also limits its scope on predicting
if user will click or not click on the recommended

item.

3. METHODOLOGY

We adopt personalized feedback features [4]
between the recommended item and the user and
personalize them to the user by binding them to
actions to express his tendency to perform one
among bookmark, reply or delete actions. We
achieve this goal by aggregating action related

past activities on items with similar attributes

values as the recommended item’s attributes

values. Finally, we wuse two state of the art

predicting algorithms to compare their
performance when features are bound to certain
action of the wuser versus when they don't
differentiate between actions. In this section we
describe feature engineering process and
algorithms wused to analyze the results of our

experiment.

3.1 Feature Engineering
3.1.1 Personalized feedback features

Our intuition is that a user clicks on job titles
that are mostly interesting to him/her.

Now, we assume that we have a set of job
concepts extracted from job titles and users’ click
data for recommended jobs. Given an action, i.e.,
bookmark, reply or delete, we define relevancy of
those actions and the users’ clicked jobs’ concepts
as how many times the user has acted upon those
concepts. Formally, we define that relevancy as
follow:

Given concept ¢ € C, a set of all concepts from
all titles of jobs; action ¢ ¢ T, a set of action
{bookmark, reply, delete}; user u ¢ U, a set of
users; a title of recommended job item as a set of
concepts and their respective count as
Ce={cj:count(c;),cy.count(c,),..,c,:count(c,)},
where count(c;) represents how many times a user
has interacted with concept ¢; w.r.t to action 7. We
define feature x, as follow:

n

Z a (count(c;)) with a{‘;:: tif ci € Cet)

1
" tavg

Xtu

i=1

,where tavg is the average number of concepts in a
title. This feature allows us to capture information
about the relevance of the concepts in the job title
for a given user. If the recommended job title has
programming concept in it, Xpoopmarku Will be
expressing how many times the user wu has
bookmarked job titles with programming concept.
If u has not interacted with jobs that have
programming in their title
before, count(programming) will be zero meaning
that programming hasn’t been interesting to user u
in the past. Note that the order of appearance of
concepts in title is not relevant; it’s the frequency

of interaction with each concept in the title for the

user u that counts. We extended this feature
engineering process to all actions
reply and delete which

have Xbookmarkus Xreplyu and Xdelete,u to get feedback

among
bookmark, led us to
on the intent to perform each of those actions
when user u is recommended with a job item with
title that has concepts he has often bookmarked,
replied or deleted. The process is the same for job
item tags as they are also expressed in terms of tag

concepts.

e9e Bookmarked Jobs
T aaa Deleted Jobs
A eeeo Replied Jobs

3oueAs|aY 21212a

25 20 nace
eve
40 in 3D 30 Reply \

Figure 1: Distribution of Job titles over
their relevance to user actions

For example a programmer might delete jobs that
have a career level of CEO of a programming
company; if such jobs come into recommended
items because the title concepts are among most
replied by the programmer, this feature will allows
telling that this is not among his favorite career
levels and may result into deletion.

Given a recommended job item i, to user u where
k means the desired career level of that job, an
action ¢ to perform on that recommended item,ly,,
a list of job items that user u has interacted with
that have career level k with regards to ¢ and [, x a
list of total items with career k the user interacted
regardless of ¢, we define career frequency feature

with regard to ¢ as:

. | L]
Cft(lkJuJ t) = n (3)
| e |
We extend the same process to industry-id,

discipline-id country and region that are common

attributes between a user and a job item.

3.1.2 User-Item related features

We generate the same type of features as the ones
in the previous section but regardless of tasks.

Using analogy of career frequency features cited
in previous section, we formally define career
frequency regardless of action as follow:

Given a recommended job item i, to user u where
k means the desired career level of that job, [, a
list of job items that user u has interacted with
career level k, [, a list of total job items the user
interacted with, we define career frequency feature

as:

l
clfy (i, w) = ||] wk ||
u

C))

Job title and its tags related features express
how many times the user has interacted with the
item by using an aggregated value of all actions
the user has done on related concepts.

For career level, if the recommended job has
career level as professional, the career level
frequency feature will express how many times the
user has interacted with this job that requires
professionals as career level. Note that this feature
will combine the number of how many times the
user has deleted, bookmarked and replied items
with career level professional which is not the
case for equation (3).

Interactions per career Interactions per industry

140000 200000
» 120000 "
E 100000 é 150000
® 80000 8
2 @ 100000
£ 60000 z
‘s 40000 5 50000
* 20000 *
0
1 2 3 4 5 6 0 5 10 15 20 25
career level industry id
250000 |nter§ct|0|?s per‘dlsm‘pllne 180000 |qter§ctlpnsl pelr Rgglqn
160000
E 200000 % 140000
S 150000 § 120000
o £ 100000
[a
£ 100000 £ 80000
5 4 60000
% 50000 4 40000
20000
0 0
0 5 10 15 20 25 0 2 4 6 8 10 12 14 16
discipline id region
Figure 1 User-item interactions distribution

over item attributes

We use overlap [9] to measure similarity of
common attributes between user and recommended
job item.

Given a user u, item i and a set of common

attributes A={at;at,,....,at,}, similarity in
attributes is calculated as follow:
1< 0 if(at(u # at(j)o)
fid) == sCapic)] G)
=1 1 if(at(Du = at())

We estimate a pseudo-session by selecting all
user interactions on the same day when the first
click on the item happened. This was motivated by
the fact that jobs before they get replied, had been
clicked or bookmarked and consequently had more
interactions during the day compared to non-
replied items therefore we generated session-look
alike to generate a feature that express if the
recommended item is the most clicked in that
pseudo-session.

Intuitively this also means that deleted items
have at least one click in the session therefore
might be easier to separate from the rest.

In total we ended up with 30 features as shown in
Tables 1.

3.2 Predicting algorithms

SVM [10] is an algorithm that maximizes the
margin between the training sets patterns that can
be applied to various classification functions.
Maximizing the margin is done by solving the

following optimization problem

Table 1: Personalized feedback and user-
item features

Feedback feature(FeaturesX Actions)
title concepts_action
tag_concept_raction
career_action
discipline action
industry action
country_ action
region action
User-item features on interactions
title concepts_interactions

tag concept_interactions
career_interactions

discipline interactions
industry_interactions 9
country interactions
region_interactions

attribute similarity

most interacted during day

Total 30

7x3=21

n n

1
max, Z a; — 3 a;a; yiy]-K(xi, x]-) 6)
i=1 iLj=1
n
Subject to Z a;y;=0 ™
i=1
and 0< a; <C,i=12,..n 8

, where x is the training training vector, and
ye{—1,1} a label associated to x depending on the
class it belong to,a, a parameter vector associated
with the decision hyper-plane, K(xi,xj)is the kernel
function measuring the distance between x;and x;
and C the upper bound of hyper-plane parameter a.
SVM can be applied to multi-classification in two
ways; One versus all, where one class is labeled
positive and the rest of other instances are
considered negative and One versus One, where
pairs of classes’ instances are trained one being

positive and another negative in n given classes

nn-1)

leading to classifiers.

In our research we used the latter as the former
makes the dataset imbalanced.

Feed forward neural networks [11] are artificial
neural networks that let information flow in one
direction from input to hidden layers and from
hidden layers to output layers. They can have zero
or more hidden layers. Each layer is composed of
neurons.

A Single neuron in hidden or output layer takes
input values from previous layer neurons; apply to
them with weights, bias and passes the results
through the activation function before sending the
output the next layer or produces final output in
case of output layer.

In this research, in the hidden layer, the results
are feed to the sigmoid as an activation function
and the output of that function is fed to the output
layer neurons.

Each neuron’s output in hidden layer can be
defined as follow:
vector(xy, Xy, X3 .., Xp,)E R and

Given input

W (Wo. Wy, Wy, ..., wy)e BFY, as a weight vector
associated to that input, b, being the bias; the

output of each neuron in our hidden layer is given

by the following function:

1
1+ e—(w0b+w1x1+---+wnxn) (9)

h(xll . -:xn: b) =

Output and hidden layers parameters are learnt
using the back propagation algorithm [12].

A softmax function 1is wused to output the
probability of each class and cross entropy loss

function for all wrong predictions we’ve made.

4 EXPERIMENT AND DISCUSSION
In this section we describe the details about our
experimental settings, dataset and discuss about

our findings.

4.1Experiment settings

We used an 8GB RAM with a CPU of type core i5.
We didn't take advantage of GPU wusage while
training neural network.

For SVM model training, we initialized our model

with the following parameters:

Table 2: SVM Parameters settings

Parameters Values

C: Penalty for the error | 1

term

v: Kernel Parameter 0.01

K: Kernel Type RBF?

Decision function shape One versus One

Neural network weights were randomized

initially and were adjusted wusing Gradient
Descendent optimizer with a learning rate of 0.01.
Bias for hidden layer and output layer were all
initialized to 1. We used one hidden layer with
neurons that are equal to the size of input; 30;
because we didn’t see any significant improvement
in training accuracy by using additional hidden

layer or number of neurons on 30 epochs.

We use Tensorflow® as our development
environment.
4.2Dataset

The dataset comprises of impressions,

interactions, items and users.

2 Radius basis Function

® https://www.tensorflow.org/

https://www.tensorflow.org/

Xing provided around 10 million of impressions.
Each represents which items were shown on the
home page by the exiting Xing job recommender to
which user in which week of the year. A typical
record in impressions has user- id; ID of the user
in users records; year, week of the year, items; a
comma separated list (not set) of items that were
displayed to the user; as attributes.

It provided around 8 million of interactions that
are job-items user clicked, replied to, bookmarked
or deleted; we are only interested in the deleted,
bookmarked. Each

comprises of user-id, item-id, interaction-type and

replied to or interaction

the time the interaction happened. 1 million job-
items were also provided. Each has attributes such
as title, tags, career level, industry-id, discipline-
id, country, region, active during data collection,
etc.

We downsized the dataset of 42" and 43" weeks
as training set and predicted wuser post-click
actions by using the dataset of 44'" week. The
52,946

job items and 140,958 interactions between users

resulting dataset comprise 22,344 users,

and items.

We note a relative small number of interactions
exist due to the fact that users aren’t looking for
jobs every day and that the dataset was designed
primary for the challenge. The organizer of the
challenge created artificial users who have few to

zero interactions to add noise to the dataset.

4.3 Results and discussion.

We did our experiment into two phases; phase one
using feedback features and omitted them in phase
two.

For SVM, we reached a score of 91% of accuracy
using personalized feedback features and 77%
after omitting them. As Table 3 and Table 4 show,
feedback features improve our result by 14%.
deleted

intuitively obvious since

High precision and recall on
recommendation was
most of the deleted items have almost one click
which is delete, however replied items precision
was slightly low because users tend to bookmark
items to reply them later therefore causing an
overlap between replied and bookmarked job
items.

On the other hand, we didn’t get significant

improvement in using neural network as they
performed almost the same as SVM, reaching a
prediction accuracy of 91% with
feedback features and 77% by

omitting them. More details about the predictions

using

personalized

results of both algorithms are listed in table 3 and
4.

5 CONCLUSION

In this paper we introduced a way of engineering
feedback

predict post-click actions the user might take after

and wusing personalized features to
visiting a recommended job item. Using feedback
features give captures strong signals from user
item interactions. We compared the behavior of
SVM and neural networks using and without using
personalized feedback features which yielded same
performance in terms of accuracy however the
introduction of feedback features improved the
accuracy of both classifiers accuracy at 14%.

This research can be useful in ranking items by
giving high ranking scores to items that this
approach predicts that they will be replied or
bookmarked and also help filter items that a user
is likely to delete in his recommended items list.
In our future work, we will be including the case
where users clicks on item but doesn't take an
action so we can confirm the effectiveness of the
findings in this research.

This research also didn’t expand its’ scope to
cold start case as it focus more on user past
history therefore might not be able to recommend
suitable items to new users. In future work we
might how we can nearest

explore exploit

neighbors of the new comer for suitable

recommendation.

Table 3: SVM vs Neural nets Predictions with personalized feedback features

SVM Feed Forward Neural nets
Measures Precision Recall Fl-score Precision Recall Fl-score
Bookmarks 0.97 0.44 0.61 0.98 0.42 0.58
Replies 0.77 0.99 0.87 0.77 0.98 0.86
Deleted 0.99 1.00 1.00 0.99 1.00 0.99
Avg total 0.93 0.92 0.91 0.93 0.91 0.90
Accuracy : 0.91 0.91

Table 4 : SVM vs Neural nets Predictions w/o personalized feedback features

SVM Feed Forward Neural nets
Measures Precision Recall Fl-score Precision Recall Fl-score
Bookmarks 0.88 0.13 0.23 0.58 0.59 0.59
replies 0.67 0.60 0.63 0.63 0.66 0.64
Deleted 0.80 0.99 0.89 0.89 0.87 0.88
Avg total 0.78 0.77 0.73 0.78 0.78 0.78
Accuracy : 0.77 0.77

6 REFERENCES

[1] S. Loh, F. Lorenzi, R. Granada, D. Lichtnow,
L.K. Wives, J.P. Oliveira, Identifying similar
users by their scientific publications to reduce
cold start in recommender systems, Proc. of
the 5th Int’l Conf. on Web Information
Systems and Technologies (WEBIST2009), pp.
593-600, 2009.

[2] S.T. Park, W. Chu, Pairwise preference
regression for cold-start recommendation, in:
Proceedings of the 2009 ACM Conference on
Recommender Systems, pp. 21-28, 2009.

[3] Ge, M., Delgado-Battenfeld, C., & Jannach, D.
Beyond accuracy: Evaluating recommender
systems by coverage and serendipity. In
RecSys (2010)

[4] Chakrabati, D., Agarwal, D., AND
Josifovsnki, V. 2008. Contextual advertising
by combining relevance with click feedback.
In Proceedings of the 17th international
conference on World Wide Web. 417-426.

[5] O. Chapelle, E. Manavoglu, and R. Rosales.
Simple and scalable response prediction for
display advertising. Transactions on
Intelligent Systems and Technology, 2013.

[6] Recsys Challenge 2016: job recommendations
based on pre-selection of offers and gradient
boosting. 10th ACM Conference on
Recommender Systems - RecSys 16

[7] W. Xiao, X. Xu.,K. Liang,J] Mao,] Wang 2016.
Job Recommendation with Hawkes Process.
10th ACM Conference on Recommender
Systems - RecSys 16

[8] Hawkes, A. G. (1971a): “Spectra of some self-
exciting and mutually exciting point
processes,” Biometrika, 58, 83—90

[9] C. Stanfill and D. Waltz. Toward memory-
based reasoning. CACM, 29(12):1213-1228,
1986.

[10] B. E. Boser, I. Guyon, and V. Vapnik. A
training algorithm for optimal margin
classifiers. In Proceedings of the Fifth Annual
Workshop on Computational Learning Theory,
pages 144-152. ACM Press, 1992.

[11] C. M. Bishop, Neural Networks for Pattern
Recognition. New York: Oxford Univ. Press,
1995

[12] Rumelhart, D. E., Hinton, G. E., and
Williams, R. J. (1986) Learning
representations by back-propagating
errors. Nature, 323, 533--536.

